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Abstract 
 
Upper bound elemental technique (UBET) for prediction of extrusion pressure in three-dimensional forward extru-

sion process is presented. Using square/rectangular billets, the study of the effect of die land length has been extended 
for the evaluations of extrusion pressures to extrude sections such as circular, square and rectangular shaped sections 
with power of deformation due to ironing effect at the die land taken into account. The extrusion pressure contributions 
due to the die land evaluated theoretically for these shaped sections considered are found to increase with die land 
lengths for any given percentage reduction and also increase with increasing percentage die reductions at any given die 
land length. The effect of die land lengths on the extrusion pressures increases with increasing complexity of die open-
ings geometry with rectangular section giving the highest extrusion pressure followed by circular with square section 
die opening, giving the least extrusion pressure for any given die reduction at any given die land lengths. The proper 
choice of die land length is imperative if excessive pressure buildup at the emergent section is to be avoided so as to 
maintain good quality and metallurgical structure of the extrudates.  

 
Keywords: Die land; Die opening geometry; Extrusion pressures; Percentage reduction in area; 3-D Upper bound  
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1. Introduction 

Upper bound analysis of three-dimensional metal 
forming processes in general and extrusion in particu-
lar has remained a subject of continuum focus of 
study due to its high productivity, lower cost and 
increased properties. However, the process itself is 
difficult to analyze due to the unpredictable behavior 
of metal flow during extrusion. There are several 
analytical approaches available to metal forming 
problems, including slip-line field theory, upper 
bound and lower bound analyses and finite element 
methods. The slip-line approach has been employed 
successfully only in analyzing plane-strain problems.  

On the other hand, finite element methods (FEM) 

have recently found much favour and are now in-
creasingly being applied to many metal forming prob-
lems. Although the FEM provides a more accurate 
description of the deformation and stresses than do 
other methods, it demands an expert’s use of a con-
siderable amount of computer time. The upper bound 
approach has much to recommend it, since, it is sim-
ple, takes less computer time and expertise, and the 
results obtained are within reasonable engineering 
approximations. As regards the three-dimensional 
extrusion of shaped sections, some analytical methods 
for predicting the metal flow according to the opti-
mum die configurations have been proposed by some 
workers [1-5]. Yang and Lee [6] proposed an energy 
method for analysis of three-dimensional sheet metal 
forming of noncircular cups with complicated shape. 
They expressed the geometric shape and velocity 
fields by, respectively, sweeping the section curves 
defined on the boundary of each zone and velocity 
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functions. Nagpal and Altan [7] proposed dual stream 
functions to obtain a kinematically admissible veloc-
ity field that demonstrated a three-dimensional metal 
flow. Their model, however, was limited to the extru-
sion of ellipse bar or rod. 

Yang and Lee [8] adopted a conformal mapping 
approach to obtain a velocity field for extrusion 
through concave and convex-shaped dies where geo-
metrical similarity is preserved throughout the defor-
mation. The axial velocity in their study was kept 
uniform at any cross-section. Wu and Hsu [9] em-
ployed the upper bound method, as well as a three-
dimensional velocity field which has a non-uniform 
velocity distribution along the extrusion axis and a 
non-linear variation velocity component along the 
radius to extrude a composite rod. All their three-
dimensional velocity fields of sleeve and core were 
generated with the aid of the shape of the final prod-
uct. The composite rod billets they used are non-
axisymmetric cross-sectional profiles like rectangular, 
hexagonal and octagonal sections which are exam-
ined. Three-dimensional extrusion is not limited to 
direct extrusion processes alone. Bae and Yang [10] 
proposed a simple kinematically admissible velocity 
field for the three-dimensional deformation, from 
which the upper bound extrusion load, the velocity 
distribution, and the configuration of the extruded 
billet are determined by minimizing the total power 
consumption with respect to chosen parameters. Nag-
pal [11] proposed an analytical method for the extru-
sion of tubes of elliptic internal shapes from round 
billets using dual stream functions. Yang and Han 
[12] analyzed three-dimensional backward extrusion 
using conformal transformation: theoretical results 
were in good agreement with those from experiment, 
but the formulation is rather complex and the compu-
tation time needs to be reduced considerably for eas-
ier design of more complicated backward-extrusion 
processes. The analyses were confined to just the 
steady-state condition of the process, so that there is 
the need of a method, such as the upper-bound me-
thod, to obtain a simple velocity field to solve both 
the non-steady state and the steady state within a rea-
sonably reduced computation time. Kim and Park 
[13] proposed a kinematically admissible velocity 
field for torsional backward extrusion by using stream 
function. Kim et al studied the torsional forging proc-
ess [14-16]. Gatto and Giarda [17] proposed a method 
for constructing kinematically admissible discontinu-
ous velocity fields for upper bound analysis of three-

dimensional plastic deformation problems termed 
spatial elementary rigid regions (SERR) which is a 
generalization of the planar elementary rigid regions 
(PERR) method devised to analyze plane strain de-
formation problem. Their formulation appears to be 
unsuitable for analyzing extrusion processes when the 
product and the billet have different sections, espe-
cially when the product section has re-entrant corners. 
Kar and Das [18] reformulated the SERR technique 
so that it could be applied to analyze extrusion of bars 
of any cross section from billets of any other cross 
section when the product and billet boundaries were 
defined by planar surfaces. All the above mentioned 
authors limited their working materials to round bil-
lets except Kar and Das and all excluded die land or 
straight portion of die. The effect of percentage reduc-
tion in area and the die land length is seen to be more 
pronounced experimentally in I-shaped sections than 
in T-shaped sections. Chitkara and Adeyemi [19] 
investigated the effect of percentage reduction in area 
on the extrusion pressures of I and T-shaped die 
openings with extrusion pressures of I-shaped section 
being higher than for T-shaped section opening. Yang 
[20] derived a theoretical equation for rod drawing 
operations that included the effect of the land and 
compared the values of friction coefficients from both 
calculations; including and neglecting die land. The 
differences between the friction coefficients calcu-
lated with and without the land were found to be ap-
preciable and hence suggested the inclusion of die 
land effects in both the theoretical and experimental 
analyses. Kiuchi et al [21] developed an upper bound 
based analytical method to calculate power require-
ments, the extrusion pressure, the optimal die length 
in extruding/drawing from round, square and rectan-
gular billets to rods, bars and wires with square, rec-
tangular, hexagonal, L-type, T-type, H-type and 
flower-type cross-sections. For this generalized for-
mulation, it also has a setback for neglecting to ac-
count for the frictional forces at the die land region. 
Nanhai et al [22] stressed the importance of proper 
simulation of die land in the extrusion of shapes with 
flat-faced die so as to avoid the generations of geo-
metrical defects and hence proposed a method of 
simulation, using finite element method, that the 
metal flow in extrusion and the die land can be ad-
justed according to the simulation results. Ajiboye 
and Adeyemi [23] improved on Kiuchi et al’s formu-
lations [21] to account for power losses due to ironing 
effect at the die land of an extrusion die with circular 
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die opening. Their investigations involved the deter-
minations of both experimental and theoretical effects 
of die land lengths on the quality of extruded products, 
extrusion pressures and flow patterns of cold-
extruded lead alloy of circular sections Avitzur [24] 
gave a detailed theoretical formulation which ac-
counted for the power losses due to friction between 
the die land and round billets during drawing and 
extrusion processes to smaller rod products. He con-
cluded that an increase in die land led to an increase 
in the required force and a decrease in maximum 
possible reductions. Ajiboye and Adeyemi [25] ex-
tended their study on the upper bound method of 
analysis of the effects of die land lengths on the extru-
sion pressures to complex extruded sections such as 
square, rectangular, I- and T-shaped sections from 
initially round billets with the powers of deformations 
due to ironing effect at die land taken into account. 
Chitkara and Celik [26] developed, based on upper 
bound theory, a three-dimensional extrusion of non-
symmetric T-shaped sections from initially round 
billets. There is, to the best of author’s knowledge, no 
research work so far that has either been presented or 
done on the three-dimensional extrusion of shaped 
section using UBET with the powers of deformations 
due to ironing effect at die land taken into account. 

In the present study, the previously two-
dimensional polar coordinates analytical approach 
(Int. J. Mech. Sci. 49 (2007) 335 – 351), based on the 
upper-bound theory was replaced with a more gener-
alized three-dimensional formulation of the UBET. 
The three-dimensional analysis for the extrusion of 
circular and square/rectangular from initially 
square/rectangular billets is studied and presented. 
The contents are divided into two major parts: flow 
pattern and energy rates. The first part presents the 
formulation of velocity field equations and their asso-
ciated strain rate fields. The second part discusses the 
computation of energy rates coupled with optimizing 
algorithms for the inherent velocity fields during the 
assemblage of elements. The effect of the die land 
length, die opening profiles and percentages reduc-
tions in areas on the extrusion pressure contributions 
due to die land effects are also investigated theoreti-
cally and presented. 
 

2. Theoretical analysis 

2.1 Shape and dimension of die surface 

Figs. 1(a) and 1(b) respectively show the schematic  

 
 
Fig. 1(a). Schematic diagram of the die surface in Cartesian 
coordinate system. 

 

 
 
Fig. 1(b). Shape and dimensions of linearly converging die. 

 
diagrams of the die surface and shape plus dimen-
sions of the linearly converging die, in Cartesian 
coordinates system used for the present numerical 
calculations. In the present modeling, the surface in 
Cartesian coordinates is represented by zs(x, y). The 
die surface [21] is derived by using linearly converg-
ing straight lines as:  
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where x1, xo and zi, zo are the dimensions of die and 
billet respectively and y1 is the length of the die. By 
using Eq. (1), and the function zs,(x, y) all of the 
strain rate components and the total powers of defor-
mation can be calculated. 

The boundary limits for the die surfaces are  
 

1

0 ( )

0 ( , )
0

f

s

x x y

z z x y
y y

≤ ≤

≤ ≤
≤ ≤

               (2)                              

 
2.2 Assumptions and velocity fields 

The following assumptions [25] are used;  
ⅰ)  the longitudinal velocity, Vy, is uniform at 

each cross-section of the material in the die 
and is equal to inlet velocity denoted by Vo at 
the entry. 

ⅱ)  The von-Mises yield criterion is assumed to be 
applicable. 

The generalized formulas of the kinematically ad-
missible velocity field can be formulated as follows. 
At first, the condition of volume constancy may be 
expressed as 
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that is, 
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Assuming that the longitudinal velocity component 
Vy is uniform at every cross-section of the material, 
Vy is derived as follows: 
From continuity equation, i.e., VA = VoAo, we have 
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Using Eq. (5) in Eq. (4) gives 
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which upon integrating we have 
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Eq. (6) satisfies the boundary condition of Vz(x, y, 

z), i.e., when z = 0, Vz(x, y, 0) = 0. From the bound-
ary condition that the material should flow along the 
shape of the die surface we have, 
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Treating the derivatives of x and y in Eq. (7) as a 

constant, Vz(x, y, zs(x, y)) will be zero and hence (7) 
reduces to  
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If the velocity component Vx is a function of x, y 

and z, Eq. (8) cannot be solved any more. Therefore 
the following assumption is employed: Vx is a func-
tion of x, and y only. Introducing this assumption and 
integrating Eq. (8), Vx is expressed as 
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and the velocity component along x-axis will be given 
as 
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Eq. (9) satisfies the boundary condition of Vx(x, y) 
i.e. when x = 0, Vx(0, y) = 0. Taking the assumption 
that Vx is a function of x and y into consideration, Eq. 
(4) is reduced to 
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Now on the die surface, where z = zs(x, y), Eq (10) 
becomes 
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From Eq. (9), we have by differentiation using the 
product rule as 
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Solving for the derivative of the velocity Vx(x, y), 
gives  
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Substituting Eq. 12(b) into Eq. (11) to give 
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Opening the brackets this reduces to 
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Eq. (13) means that the material on the die surface 
flows along the shape of the die. This is the boundary 
condition for the metal flow on the die surface. Eqs. 
(5), (9) and (10) are called the kinematically admissi-
ble velocity field which satisfies the condition of vol-
ume constancy and all of the kinematic boundary 
conditions. 

The formulae of the velocity field derived through 
the above mentioned procedures are based upon the 
functions expressing the shapes of employed die, 
given by Eq. (1). Therefore, when these functions are 
given, even if they have complicated three-
dimensional geometry or forms, the velocity field is 
easily calculated. These formulae of the velocity 
fields can be applied to solve extrusion processes.  

 
2.3 Strain rate components 

The strain rate components are the derivatives of 
kinematically admissible velocity fields of Eqs. (5), 
(9) and (10). Now, differentiating velocity Eq. (9) to 
get strain rate along x-axis, 
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The strain rate components along the y-axis are ob-

tained by differentiating the kinematically admissible 
velocity field Eq. (5):   
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From Eqs. (14) and (15), the strain ∈zz(x,y) is ob-
tained as: 
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The other components of strain rates are defined as 

follows; 
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3. The upper bound solution 

The total power consumption, J*, during extrusion 
through the die is the sum of the power losses due to 
the plastic deformation inside the die, (Ei), due to 
velocity discontinuities at entry, exit and when the 
profiles of the entrance and exit cross-sections of the 
material have singular points: the planes including a 
singular point and the longitudinal axis are also de-
fined as the boundaries of velocity discontinuity, (Es), 
and that due to frictional resistance at the interface 
between the material and the die, (Ef). The upper 
bound on total power dissipated is expressed as the 
sum of the individual terms for internal power, shear 
power and the power to overcome prescribed surface 
tractions. Each of these individual contributions will 
now be computed separately.  
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The total will be calculated and a minimization 

procedure will be performed on the upper bound to 
obtain the extrusion pressure to extrusion process. 

The individual power loss components are evalu-
ated as follows. 

 
3.1 The internal power of deformation; 
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The first term on the right-hand side of Eq. (20) 

represents the internal power of deformation Ei. The 
internal power of deformation can be calculated by: 
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i.e.  
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3.2 Shear power 

The second term on the right-hand side of Eq. (20) 
accounts for the shear losses along surfaces of veloc-
ity discontinuity. The power of deformation due to 
shear loss Es is given [1] as: 
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where Γs are the boundaries of velocity at entrance 
and exit and internal boundaries of discontinuity due 
to the singular points on the profile at entrance and 
exit of cross-sections and dS is the elemental surface 
area; y* is the y-coordinate denoting the entrance and 
exit. The relative slip on the internal boundaries at 
singular points on profile is calculated by 
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where x* + 0, x*- 0 denote co-ordinates of the slip-line 
boundaries. 

The calculation is simplified when the discontinuity 
planes are normal to the axes. For a Cartesian system 
with x, y and z coordinates, the directions of the three 
possible discontinuity planes coincide with those of 
the coordinate system, as given below. 

For shear plane normal to x-axis, i.e. y axis is nor-
mal to this plane, x-axis then the velocity difference is 
given as 
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where the superscripts i and j refer to elements i and j, 
respectively. Thus the shear loss using Eq. (22) is 
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The limits of integration β and γ depend on the ge-

ometry of the shear area. For a rectangle, we must 
have β = b and γ = c. 

Similarly, when the shear surface is normal to the y 
axis, the expression for shear power is 
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The limits of integration are γ = c and α = a for the 

rectangle. 
Finally, for the shear loss when the shear plane is 

normal to the z axis, the equation for shear loss is 
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∫ ∫&         (26) 

 
with β = b and α = a for rectangular surface.  
 

3.2.1  Shear power losses at singular points of 
profiles  

When the extruded product involves singularities in 
the form of re-entrant corners (such as square, rectan-
gular, I- and T-section), the shear losses at these sin-
gularities points in rectangular and square geometries 
can be obtained as 

 

( )4
3 ss

o
sE V dSσ

ΓΓ
= ∆∫&             (27) 

 
where 
  

( ) ( ) ( )* *0, , 0, ,
s z zV V x y z V x y z

Γ
⎡ ⎤∆ = + − −⎣ ⎦  

For T-section, Eq. (27) can be modified to obtain the 
shear losses at singular points as 
 

( )8
3 ss

o
sE V dSσ

ΓΓ
= ∆∫&    (28)           

 
where 

 
( ) ( ) ( )* *0, , 0, ,

s z zV V x y z V x y z
Γ

⎡ ⎤∆ = + − −⎣ ⎦  

 
While for that of the I-section, Eq. (28) can be modi-
fied to obtain the shear losses at singular points as 
 

( )12
3 ss

o
sE V dSσ

ΓΓ
= ∆∫&               (29) 

 
where 
  

( ) ( ) ( )* *0, , 0, ,
s z zV V x y z V x y z

Γ
⎡ ⎤∆ = + − −⎣ ⎦    

 
3.3 Frictional power losses at surfaces: 

The friction power equation is given as: 
 

S
u dSτ ∆∫                         (30) 

 
where  
 

2 2 2( ) ( , ) ( , , )y x zu V y V x y V x y z∆ = + +   

 
and ∆u denotes the resultant velocity along surfaces S, 
Γ is the tractive shear stress, dS is the elemental ele-
ment taken on the surface S, z = zo(x, y). 

 
3.3.1 Frictional power loss along the die surface 
The friction power loss along the die surface is 

given as, using Eq. (26),  
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R* is the projection of S onto the xy plane, m is the 

friction coefficient 
The surface is explicitly given as 
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   (32) 
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where,  
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 (33)            

 
3.3.2  Frictional power at workpiece-punch inter-

face 
The frictional power dissipated at the work mate-

rial/punch interface is given as 
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3
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where 

 

( , , ) ( , ) ( )z x yV x y z z V x y V y
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  (34) 

 
From the assumption that the axial velocity com-

ponent Vy is uniform at each cross-section of the ma-
terial in the die, using the compressibility condition, 
the volume of material displaced in unit time due to 
the descent of the top die at velocity Vo is AoVo. The 
loss of material from this inlet zone into the exit zone 
is equal to the gain of material from the inlet zone, 
since the metal is incompressible. This is given by the 
product of the exit velocity Vy(y) and exit area, 
AyVy(y).  
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   (35)  

 
where y/ is the current billet height to die surface and 
Ho is the original billet height. 

 
3.3.3  Frictional power at the container/billet in-

 terface 
The frictional power at the billet/container interface 

is due to the axial sliding velocity between the mov-

ing billet and stationary die. Integrating over the 
channel (Ho – y/), we have 
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     (36) 
 
3.3.4 Frictional power at die land 
The present formulation based on upper bound 

analysis accounts for frictional power at the die land 
due to ironing effect. The axial velocity is modified, 
by using the condition of volume constancy between 
the inlet and the die land region as follows: 
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where l is the die land length, a and b are die opening 
section lengths in x and y axes and  
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Using square billets, the frictional powers at the die 
land region, for circular and shaped sections, such as 
rectangular and square are evaluated from expressions 
such as: 

ⅰ) For rectangular section of sides 2a and 2b 
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Fig. 2. Rectangular die opening. 
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Fig. 3. Square die opening. 

 

 
  
Fig. 4. Circular die opening. 

 
ⅱ) For square section of sides 2a 
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ⅲ)  For circular die opening of perimeter 2πro 

where ro is the radius of circle, 
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Therefore, the total frictional power fW∑ is given 
by 
 

1 2 landf f f fW W W W= + +∑             (41) 

 
Therefore, the total powers of deformation, J* is ob-
tained, using 
 

*
i s fJ W W W= + +∑ ∑             (42) 

 
The power computed was converted to dimen-

sionless parameter as follows: 

The dimensionless extrusion pressure 
0

P
σ

 is given 

by 
 

0

P
σ

=
*

0 0 o

P
A V σ

                      (43) 

 
The die land length (x) is also reduced to the rela-

tive die land length by dividing by original billet 
height (x/Ho). 

4. Computational method 

When the geometry of exit cross –section or the die 
is given, the surface of the die can then be known 
explicitly. By performing, the necessary differentia-
tions and integrations on shapes of the die surface 
functions, the velocity field Eqs. (5), (9) and (10) and 
strain rates Eqs. (14)-(19) were derived. 

The area and volume integrals of Eq. (42) were per-
formed, by using the Gaussian quadrature integration 
techniques by transforming the polynomial variable 
by: 
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2
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where a and b are respectively the upper and lower 
limits of integrations of the zone of die surface giving. 

The area integrals of the friction losses, Wf, and 
shear losses, Ws,  
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where ( )i jψ η ε is the resultant velocity field and Wp 
Wj are assigned weightings and for volume integrals 
of the internal powers of deformation (Wi) given as  
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                                  (46) 
 

where ( , , )i j kGψ η ε is the resultant strain and volume 
under deformation. A computer program written in 
C++ language was used [23] to evaluate various 
components of Eq. (42) to determine dimensionless 
extrusion pressure. 

 
5. Results and discussion 

5.1  Relative extrusion pressure, (P/Y), determina-
tions 

5.1.1 Rectangular, square and circular die open-
ings 

The relative extrusion pressures, P/Y, versus rela-
tive die lengths, l/Xo, for circular, square and rectan-
gular (b:a = 2:1) sections are shown in Figs. 5, 6 and 
7 respectively, for varying die land lengths indicated. 
For a given die land length, x, the relative extrusion 
pressures, P/Y, decrease with increasing relative die 
lengths, l/xo, until a minimum relative length is  
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Fig. 5. Effects of die land lengths on the extrusion pressures 
of circular die opening at a given die reduction in area of 
58%. 
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Fig. 6. Effects of die land lengths on the extrusion pressures 
of square die opening at a given die reduction in area of 58%. 

 
 

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0 0.5 1 1.5 2 2.5

Relative die length (l/xo)

O
pt

im
al

 re
la

tiv
e 

ex
tru

si
on

 p
re

ss
ur

e 
(P

/Y
)

Die land = 1mm
Die land = 5mm
Die land = 10mm

Die land = 15mm
Die land = 20mm

  
Fig. 7. Effects of die land lengths on the extrusion pressures 
of rectangular die opening at a given die reduction in area of 
58%. 

reached; beyond this minimum relative length, rela-
tive extrusion pressures start to increase again. The 
normalized extrusion pressure, Pmin/Y, which corre-
sponds to this minimum relative extrusion pressure 
gives the optimal extrusion pressure, Pmin/Y, that is 
required to extrude under a given die land length for a 
given percentage reduction in area under considera-
tion. It can be seen that, increasing the die land 
lengths will produce various optimal relative extru-
sion pressures irrespective of die opening’s geometry 
(see Figs. 5, 6 and 7). Also, from Figs. 5, 6 and 7 
using the same friction coefficient of 0.065 and per-
centage reduction in area of 58, the optimal relative 
die lengths are found to occur at the same points, i.e., 
l/xo = 0.75 for circular, square and rectangular die 
openings respectively, for all various die land lengths 
considered. This is in close agreement with Chitkara 
and Celik’s [2] findings in their analytical models on 
the extrusion of T-section shape that for a particular 
friction factor. The optimal die length changed only 
slightly provided the reduction in cross-section area 
was either the same or close to each other. For other 
varying percentage reductions in area, R say 69% and 
76%, the optimal relative die lengths are found to 
occur at l/xo = 0.5, respectively, for square die open-
ing and at the same values of reduction in areas of 
69% and 76%, the optimal relative die lengths are l/xo 
= 0.75 respectively for rectangular die opening.  

 
5.2  Variation of normalized extrusion pressure with 

relative die land length 

5.2.1 Square, rectangular and circular die open-
ings 

Figs. 8, 9 and 10 show the theoretical plots of nor-
malized extrusion pressure, P//Y versus normalized or 
relative die land lengths, x/Ho, for the respective 
square, rectangular and circular sections openings 
computed for varying percentages reductions in area 
indicated. Increasing the percentages reductions in 
area leads to increasing normalized extrusion pres-
sures, P//Y, for any given die land lengths and also 
that, increasing die land lengths leads to increasing 
normalized extrusion pressure at any given percent-
age reduction in area investigated. By repeating simi-
lar procedures, the optimum extrusion pressures are 
determined for other varying die land lengths, say 1 
mm, 5 mm, etc at a given percentage reduction in 
area for the respective circular, square and rectan-
gular sections openings of Figs. 5, 6 and 7. The  
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Fig. 8. Effects of die reduction in areas on the correct normal-
ized extrusion pressures of square die opening. 
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Fig. 9. Effects of die reduction in areas on the correct normal-
ized extrusion pressures of rectangular die opening. 
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Fig. 10. Effects of die reduction in areas on the correct nor-
malized extrusion pressures of circular die opening. 

whole procedures are repeated at varying die land 
lengths and percentages reductions in area to give 
Figs. 8, 9 and 10 for the respective square, rectangular 
and circular die openings.  

 
5.2.2  Die land length and die geometries extru-

sion pressure contributions, ∆Po/Y, Deter-
mination 

Extrapolating each plot of Figs. 8, 9 and 10 to in-
tercept the extrusion pressure axis, gives the values of 
normalized extrusion pressure, Po/Y, corresponding to 
zero die land length for each reduction in area indi-
cated. For each given reduction in area, this value 
subtracted from the correct normalized extrusion 
pressure value, P//Y, obtained for various die land 
lengths gives the extrusion pressure contribution of 
each die land length to the extrusion pressure as 
∆Po/Y =(P/-Po)/Y. The dimensionless die land length 
extrusion pressure contribution, ∆Po/Y, is seen to 
generally increase with increase die land lengths and 
also to increase with increased percentages reductions 
in area (see Table 1) for all die opening geometries 
investigated. Generally, die land lengths contribute 
significantly to the extrusion pressures for all die 
openings geometries and more especially at higher 
die reductions for any die opening geometry. Higher 
perimeters of these geometries coupled with higher 
frictional effects may possibly account for the higher 
contributions of die land lengths to the total extrusion 
pressures (see Table 1) 

Fig. 11 shows the plot of the correct relative ex-
trusion pressure, P/Y, versus increasing relative die 
land lengths at a given die reduction of 58% for  
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Fig. 11. Effect of die opening shape on the optimal relative 
extrusion pressure at a given die reduction in area of 58%. 
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circular, rectangle and square shaped die openings. 
The rectangular-shaped section die opening gives 
the highest extrusion pressure, followed by circular 
shaped die openings with square section die opening, 
giving the least extrusion pressure for the given 58% 
die reduction at any given die land lengths. 

 
6. Conclusion 

Using square or rectangular billets and upper bound 
analysis, the effect of the die land lengths on the ex-
trusion pressure is formulated in Cartesian coordi-
nates system for shaped extruded sections such as 
square and rectangular with the power of deformation 
due to ironing effect at die land included. The extru-
sion pressure contributions due to the die land evalu-
ated theoretically for shaped sections considered are 
found to increase with die land lengths for any given 
percentage reduction and also increase with increas-
ing percentage die reductions at any given die land 
length. The effect of die land lengths on the extrusion 
pressures increase with increasing complexity of die 
openings geometry with rectangular section giving 
the highest extrusion pressure followed by circular 
with square section die opening, giving the least ex-
trusion pressure for any given die reduction at any 
given die land lengths. With adequate knowledge of 
the importance of friction in metal forming, the pre-
sent 3-D rectangular coordinate formulation gave 
more convincing results to researchers in metal form-
ing processes than the previous 2-D polar coordinate 
formulation [25]. 
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Nomenclature----------------------------------------------------------- 

J*  : Total power of deformation   
Wi   : Internal strain rate power of deformation 
Wf   :  Frictional power losses 
Ws  : Shear power dissipated at boundaries 

  of velocity discontinuity.  
y/  :  Current billet height to die surface 
l   :  Length of die 
xo   :  Original length of billet  
x, y, z  :  Cartesian co-ordinate 
Vo   :  Steady punch velocity   
Vr, Vy, Vz  :  Velocity components. 
zs(x, y) :  Functions defining the shape of die  
    geometry 
xf (y)   :  Function defining the zone of plastic  
    deformation 
m   :  Friction coefficient    
Pave   :  Average punch pressure 
∆v   :  Resultant velocity   
Ho   :  Original billet height  
y1   :  Die length    
R   :  % reduction in area 
x   :  Die land length   
Pmax, Pmin, P/ :  Extrusion pressures 
Y  :  Mean yield stress  
A2/A1  :  Area ratio 
a, b  :  Height, length of sides of rectangle  
    section 
Ao   :  Original billet area   
A1  :  Billet area responsible for the flange  
A2  :  Billet area responsible for the web 
 
Greek symbols 

σo   :  Flow stress of the working material 
Γs  :  Boundaries of velocity  

,ii ijε ε& &    :  Strain rate components discontinuity at  

Table 1. Die land extrusion pressure contributions, ∆Po/Y, at various % reductions in area for various die opening’s profiles.     
 

Die land length contribution to extrusion pressure ∆Po/Y Die opening 
geometry 

%reduction in 
area, R 

Extrapolated 
extrusion pressure 

(Po/Y)MNm-2 1 mm 5 mm 10 mm 15 mm 20 mm 

quare 
58 
69 
76 

1.40 
1.86 
1.98 

0.03 
0.04 
0.04 

0.08 
0.11 
0.13 

0.13 
0.18 
0.22 

0.18 
0.25 
0.31 

0.23 
0.32 
0.40 

Circular 
58 
69 
76 

1.61 
1.98 
2.18 

0.03 
0.04 
0.04 

0.08 
0.11 
0.13 

0.12 
0.18 
0.24 

0.17 
0.25 
0.37 

0.22 
0.32 
0.46 

Rectangular 
58 
69 
76 

2.14 
2.40 
2.58 

0.04 
0.09 
0.08 

0.09 
0.19 
0.21 

0.17 
0.30 
0.34 

0.24 
0.40 
0.48 

0.31 
0.51 
0.61 
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  exit and entry 
ε  : True strain entry including singular points 
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